
ROBOTEYE C++ LIBRARY

Reference Manual

VERSION 2.4.1.319

WED 5TH AUG, 2015

Ocular Robotics Pty Ltd
Unit F1, 13-15 Forrester Street

Kingsgrove, NSW 2208
Sydney, Australia

www.ocularrobotics.com

Contents

1 RobotEye C++ Library Reference Manual 1

2 RobotEye Conventions 3
2.1 RobotEye Coordinate System Definitions 3
2.2 RobotEye Angle Conventions . 5

3 RobotEye Network Setup 7
3.1 RobotEye IP Address . 7
3.2 Ethernet as a Control Bus . 7
3.3 Configuring Your Firewall . 8

4 Hierarchical Index 11
4.1 Class Hierarchy . 11

5 Class Index 13
5.1 Class List . 13

6 Class Documentation 15
6.1 ocular::ocular_rbe_obs_t Struct Reference 15

6.1.1 Detailed Description . 15
6.1.2 Member Data Documentation 15

6.1.2.1 azimuth . 15
6.1.2.2 elevation . 15
6.1.2.3 intensity . 16
6.1.2.4 range . 16

6.2 ocular::RobotEye Class Reference 16
6.2.1 Detailed Description . 17
6.2.2 Constructor & Destructor Documentation 17

6.2.2.1 RobotEye . 17
6.2.3 Member Function Documentation 17

6.2.3.1 GetApertureAngles 18
6.2.3.2 GetErrorString 18
6.2.3.3 GetLastBlockingError 18
6.2.3.4 GetLastNonBlockingError 18
6.2.3.5 GetMotionTimeout 18
6.2.3.6 GetResponseTimeout 19
6.2.3.7 GetSerial . 19
6.2.3.8 Home . 19
6.2.3.9 Home . 19

ii CONTENTS

6.2.3.10 SetAcceleration 20
6.2.3.11 SetApertureAngles 20
6.2.3.12 SetApertureAngles 21
6.2.3.13 SetIPSettings 22
6.2.3.14 SetLaserGain 22
6.2.3.15 SetMotionTimeout 22
6.2.3.16 SetResponseTimeout 23
6.2.3.17 StartBoundedElevationScan 23
6.2.3.18 StartFullFieldScan 24
6.2.3.19 StartLaser . 24
6.2.3.20 StartRegionScan 25
6.2.3.21 Stop . 25
6.2.3.22 StopLaser . 25
6.2.3.23 TrackApertureAngles 25

6.3 ocular::RobotEyeGrabber Class Reference 26
6.3.1 Member Function Documentation 26

6.3.1.1 StartLaser . 27
6.3.1.2 StartListening 27

6.4 ocular::RobotEyeLaserDataCallbackClass Class Reference . . . 28
6.4.1 Detailed Description . 28

6.5 ocular::RobotEyeManager Class Reference 28
6.5.1 Detailed Description . 29
6.5.2 Constructor & Destructor Documentation 29

6.5.2.1 RobotEyeManager 29
6.5.3 Member Function Documentation 29

6.5.3.1 CheckIP . 29
6.5.3.2 GetFormattedFoundEyeList 29
6.5.3.3 GetFoundEyeList 29
6.5.3.4 GetIPFromSerial 30
6.5.3.5 GetNumEyesInList 30
6.5.3.6 IsKnownSerial 30
6.5.3.7 ResetEyeList . 30
6.5.3.8 SearchForEyes 31
6.5.3.9 SetIP . 31
6.5.3.10 StopSearching 32
6.5.3.11 WaitForTransactionComplete 32

6.6 ocular::RobotEyeManagerCallback Class Reference 32
6.6.1 Detailed Description . 32
6.6.2 Member Function Documentation 33

6.6.2.1 ManagerCallbackFcn 33
6.7 ocular::RobotEyeNotificationCallbackClass Class Reference . . 33

6.7.1 Detailed Description . 33
6.7.2 Member Function Documentation 33

6.7.2.1 NotificationCallback 33

RobotEye C++ Library - Ocular Robotics Pty Ltd

Chapter 1

RobotEye C++ Library Reference
Manual

This document is the programmer’s reference for Ocular Robotics’ Pty. Ltd.
RobotEye driver and its Application Programming Interface (API).

This driver supports all OEM versions of the RobotEye. It is implemented as a
cross-platform C++ class library with simple API.

2 RobotEye C++ Library Reference Manual

RobotEye C++ Library - Ocular Robotics Pty Ltd

Chapter 2

RobotEye Conventions

2.1 RobotEye Coordinate System Definitions

The RobotEye device uses a right-handed (or ’positive’) coordinate system
fixed to the centre of the ’head’ of the RobotEye with the aperture centred
on the y axis when the aperture is at zero degrees azimuth and zero degrees
elevation. The x axis is constrained to the horizontal plane, and the z axis ’up’
with respect to x and y. The aperture angles (usually specified as the ’azimuth-
Angle’ and ’elevationAngle’) are angular offsets in azimuth and elevation from
the y axis.

The following diagrams summarise the coordinate system used for the Robot-
Eye system.

Figure 2.1: The RobotEye Coordinate System

4 RobotEye Conventions

The diagram above shows the right-handed frame used for the RobotEye.

Figure 2.2: The RobotEye Azimuth Reference Surface

The diagram above shows the reference used for the direction of the x axis.
The x axis, which is the ’azimuthAngle’ zero reference is defined as being per-
pendicular to the encoder mounting surfaces.

Figure 2.3: The RobotEye Elevation Reference Surface and Azimuth and Ele-
vation Rotation Sign

The final diagram shows two things;

• The aperture zero elevation angle lies in a plane parallel to the to the
RobotEye mounting flange mounting surface.

• The sign of the aperture angles, and angular rates. AzimuthAngle is more

RobotEye C++ Library - Ocular Robotics Pty Ltd

2.2 RobotEye Angle Conventions 5

positive clockwise when viewed from above, and ElevationAngle is posi-
tive upwards.

2.2 RobotEye Angle Conventions

The RobotEye library uses the following conventions when dealing with angles.

• Angles passed to the library must be expressed in degrees

• Functions that command the RobotEye to an absolute position will always
take the shortest (or acute angle) path from the current location to the new
location. i.e. if the RobotEye azimuth angle is currently 359 degrees, and
it is commanded to 1 degree, it will only move 2 degrees in azimuth.

• Azimuth angles must be constrained to the domain 0 -> 360 degrees,
where zero is defined as per the RobotEye Coordinate System Defini-
tions.

• Elevation angles must be constrained to the domain -maxElevation ->
maxElevation, where maxElevation is typically 35 degrees. This angle
can be varied for custom RobotEye devices. Zero degrees elevation is
horizontal, as per the definitions given in the RobotEye Coordinate Sys-
tem Definitions.

RobotEye C++ Library - Ocular Robotics Pty Ltd

6 RobotEye Conventions

RobotEye C++ Library - Ocular Robotics Pty Ltd

Chapter 3

RobotEye Network Setup

3.1 RobotEye IP Address

The RobotEye will come preconfigured with a static IP address on a private I-
PV4 subnet. See IPv4 private addresses for more information. The specific
IP address will be provided with the RobotEye packaging documentation. The
IP address of an eye can be changed using the RobotEyeManager utility avail-
able through the RobotEyeTools installer (recommended), or programatically
with the RobotEyeManager class.

3.2 Ethernet as a Control Bus

It is strongly recommended that the ethernet interface to the RobotEye be con-
sidered a time-critical control bus. In practice this means that in an ideal sit-
uation, only the host computer (the PC where the user application is running)
and the RobotEye are connected together via the ethernet connection. If the
host PC must be connected to another network (i.e. a corporate intranet, or the
internet), it should be via a seperate network adapter on a different subnet.

It is possible to connect multiple RobotEye devices in a single network. In this
case, it is recommended that the network be fully switched to avoid potential
data ’collisions’ on the network.

The following diagrams illustrate the preferred network setup for one or multiple
RobotEyes. Note again that it is recommended that if the host PC must be
connected to another network, that it should be done using a seperate network
interface card on a seperate subnet.

http://en.wikipedia.org/wiki/IP_address#IPv4_private_addresses

8 RobotEye Network Setup

Figure 3.1: Network Schematic for Connecting a Host PC to a Single RobotEye

Figure 3.2: Network Schematic for Connecting a Host PC to Multiple Robot-
Eyes

3.3 Configuring Your Firewall

In general, if the advice given in Ethernet as a Control Bus is followed, then it
should be acceptable to disable any firewalls on the network adapter connected
to the RobotEye device, as it is on a private network not accessible to the

RobotEye C++ Library - Ocular Robotics Pty Ltd

3.3 Configuring Your Firewall 9

outside world. This is the simplest option if you are having network related
issues.

RobotEye C++ Library - Ocular Robotics Pty Ltd

10 RobotEye Network Setup

RobotEye C++ Library - Ocular Robotics Pty Ltd

Chapter 4

Hierarchical Index

4.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

ocular::ocular_rbe_obs_t . 15
ocular::RobotEye . 16

ocular::RobotEyeGrabber . 26
ocular::RobotEyeLaserDataCallbackClass 28
ocular::RobotEyeManager . 28
ocular::RobotEyeManagerCallback . 32
ocular::RobotEyeNotificationCallbackClass 33

12 Hierarchical Index

RobotEye C++ Library - Ocular Robotics Pty Ltd

Chapter 5

Class Index

5.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

ocular::ocular_rbe_obs_t . 15
ocular::RobotEye . 16
ocular::RobotEyeGrabber . 26
ocular::RobotEyeLaserDataCallbackClass

Callback class for Laser Scanner Data 28
ocular::RobotEyeManager . 28
ocular::RobotEyeManagerCallback 32
ocular::RobotEyeNotificationCallbackClass

Callback class for notification callbacks from asynchronous
commands . 33

14 Class Index

RobotEye C++ Library - Ocular Robotics Pty Ltd

Chapter 6

Class Documentation

6.1 ocular::ocular rbe obs t Struct Reference

#include <RobotEyeCommon.h>

Public Attributes

• double azimuth
• double elevation
• double range
• unsigned short int intensity

6.1.1 Detailed Description

The Ocular Range Bearing Elevation observation type. This type is used by the
RobotEye library to return range-bearing-elevation observations from Ocular
Robotics laser scanner products.

6.1.2 Member Data Documentation

6.1.2.1 double ocular::ocular rbe obs t::azimuth

The azimuth angle of the observation in degrees from 0 to 360

6.1.2.2 double ocular::ocular rbe obs t::elevation

The elevation angle of the observation in degrees from -35 to 35

16 Class Documentation

6.1.2.3 unsigned short int ocular::ocular rbe obs t::intensity

The intensity recorded for this observation. When not present, will be set to 0

6.1.2.4 double ocular::ocular rbe obs t::range

The range of the observation in meters

The documentation for this struct was generated from the following file:

• include/roboteye/RobotEyeCommon.h

6.2 ocular::RobotEye Class Reference

#include <RobotEye.h>

Inheritance diagram for ocular::RobotEye:

ocular::RobotEye

ocular::RobotEyeGrabber

Public Member Functions

• RobotEye (std::string eyeIP)
• ocular_error_t StartLaser (unsigned short Freq, unsigned short Averag-

ing, bool Intensity, unsigned short TargetPort)
• ocular_error_t StopLaser ()
• ocular_error_t Home ()
• ocular_error_t Home (ocular::RobotEyeNotificationCallbackClass
∗callbackPtr)

• ocular_error_t Stop ()
• ocular_error_t StartFullFieldScan (double AzRate, unsigned short N-

Lines)
• ocular_error_t StartBoundedElevationScan (double AzRate, double el-

Min, double elMax, unsigned short NLines)
• ocular_error_t StartRegionScan (double AzRate, double azMin, double

azMax, double elMin, double elMax, unsigned short NLines)
• ocular_error_t SetApertureAngles (double Az, double El, double Speed)
• ocular_error_t SetApertureAngles (double Az, double El, double Speed,

ocular::RobotEyeNotificationCallbackClass ∗callbackPtr)
• ocular_error_t TrackApertureAngles (double Az, double El, double

Speed)

RobotEye C++ Library - Ocular Robotics Pty Ltd

6.2 ocular::RobotEye Class Reference 17

• ocular_error_t SetAcceleration (double Acceleration)
• ocular_error_t SetIPSettings (std::string Serial, std::string DesiredIP)
• ocular_error_t GetApertureAngles (double &Az, double &El)
• ocular_error_t GetSerial (std::string &serial)
• ocular_error_t GetLastBlockingError (void)
• ocular_error_t GetLastNonBlockingError (void)
• unsigned int GetResponseTimeout (void)
• void SetResponseTimeout (unsigned int timeout)
• unsigned int GetMotionTimeout (void)
• void SetMotionTimeout (unsigned int timeout)
• ocular_error_t SetLaserGain (int gain)

Static Public Member Functions

• static std::string GetErrorString (ocular_error_t errorCode)

6.2.1 Detailed Description

The RobotEye class.

This class contains all of the public programmatic interfaces to the RobotEye
system. The class can be instantiated multiple times to connect to RobotEye
systems on different IP addresses.

6.2.2 Constructor & Destructor Documentation

6.2.2.1 ocular::RobotEye::RobotEye (std::string eyeIP)

The default RobotEye constructor. All resource acquisition is done during con-
struction.

Parameters
eyeIP - the IP address of the RobotEye expressed as a string i.e. "10.-

1.1.200"

Exceptions
std::runtime_error - likely causes; incorrect network setup, configuration errors.

6.2.3 Member Function Documentation

RobotEye C++ Library - Ocular Robotics Pty Ltd

18 Class Documentation

6.2.3.1 ocular error t ocular::RobotEye::GetApertureAngles (double & Az, double &
El)

A method to capture the current position of the RobotEye. This command will
query the robot eye for it’s current position. If the return value is NO_ERROR
then Az and El will contain the current eye location.

Parameters
out &Az - The target location to store the eye azimuth in de-

grees
out &El - The target location to store the eye elevation in de-

grees

Note

This command should not be called at rates higher than 25 Hz. Future
versions of the library will support a high-frequency streaming form of this
command for rapid updates.

6.2.3.2 static std::string ocular::RobotEye::GetErrorString (ocular error t errorCode)
[static]

A method to translate an ocular_error_t error code into a human-readable de-
scriptive string.

Parameters
errorCode - The error code to translate. If the error is not recognised, the

string "Unknown Error" will be returned.

6.2.3.3 ocular error t ocular::RobotEye::GetLastBlockingError (void)

A method to retrieve the last error code returned by the RobotEye to a blocking
transaction.

6.2.3.4 ocular error t ocular::RobotEye::GetLastNonBlockingError (void)

A method to retrieve the last error code returned by the Robot Eye to a non-
blocking transaction.

6.2.3.5 unsigned int ocular::RobotEye::GetMotionTimeout (void)

A method to retrieve the current timeout for motion transactions. "Motion" trans-
actions are commands where the response from the eye does not come until

RobotEye C++ Library - Ocular Robotics Pty Ltd

6.2 ocular::RobotEye Class Reference 19

the commanded motion is complete, such as Set Aperture Angles and Home.

6.2.3.6 unsigned int ocular::RobotEye::GetResponseTimeout (void)

A method to retrieve the current timeout for response transactions. "Response"
transactions are the vast majority of the transactions with the RobotEye, where
the response to the command is immediate.

6.2.3.7 ocular error t ocular::RobotEye::GetSerial (std::string & serial)

A method to acquire the serial number of the target RobotEye. This command
will query the robot eye for it’s serial number. If the return value is NO_ERROR,
then serial will contain the serial number of the RobotEye.

Parameters
out &serial - The target location to store the eye serial string

6.2.3.8 ocular error t ocular::RobotEye::Home ()

Perform homing routine. This command will cause a RobotEye to execute it’s
homing routine. The overloaded variant with no arguments is a blocking com-
mand, and will not return until the motion is complete or the eye has responded
with an error.

Note

This is a blocking function call, and will not return until the home routine
has been completed, and all motion ceased.
This command uses the motion timeout, as it is a movement command
waiting for the completion of the move.
This command can interrupt an in-progress non-blocking SetAperture-
Angles or Home command. When this is done, the callback for the pre-
viously executing non-blocking command will return with ERR_TIMEOUT.

6.2.3.9 ocular error t ocular::RobotEye::Home (ocular::-
RobotEyeNotificationCallbackClass ∗ callbackPtr
)

Perform homing routine. This command will cause a RobotEye to execute
it’s homing routine. The overloaded variant with a callback handle is a non-
blocking command, and will return immediately. The callback will notify the
sender of successful or otherwise completion of the move.

RobotEye C++ Library - Ocular Robotics Pty Ltd

20 Class Documentation

Parameters
callbackPtr - This is a pointer to a RobotEyeCallbackClass. The user

should implement a derived-class with an implementation of the
NotificationCallback virtual function to be executed when the mo-
tion is complete or an error has occured.

Note

This command uses the motion timeout, as it is a movement command
waiting for the completion of the move.
A non-blocking motion command may be interrupted with any blocking
motion command such as the scan patterns, SetApertureAngles, Track-
ApertureAngles, Stop or Home. When interrupted in this manner, the call-
back will fire when the motion timeout occurs with an ERR_TIMEOUT ar-
gument.

6.2.3.10 ocular error t ocular::RobotEye::SetAcceleration (double Acceleration)

Modify acceleration limits. This method allows the default controller acceler-
ation settings to be overwritten. This is not intended to be a commonly used
function - for a detailed description of usage, contact Ocular Robotics Pty. Ltd.

Parameters
Accelera-

tion
- the new acceleration in deg/s/s

6.2.3.11 ocular error t ocular::RobotEye::SetApertureAngles (double Az, double El,
double Speed)

Blocking synchronised motion command. Method used to point the Robot-
Eye aperture at a specific angle, specified in degrees, in the default Robot-
Eye coordinate system. The function waits for the motion to complete before
returning control to the caller. It is intended to be the standard blocking method
for pointing a Robot Eye.

Parameters
Az - Azimuth angle in degrees (0 to 360)
El - Elevatiuon angle in degrees (-max to +max) where max de-

pends on model (usually max = 35 degrees). 0 degrees is the
horizontal plane.

Speed - in Hz (the vector motion speed). This is an upper speed limit
only, depending on the current acceleration limit the eye may not
reach the specified speed during the motion.

RobotEye C++ Library - Ocular Robotics Pty Ltd

6.2 ocular::RobotEye Class Reference 21

Note

This is a blocking function call, and will not return until the specified aper-
ture position has been reached, and all motion ceased.
This command uses the Motion timeout, as it is a movement command
waiting for the completion of the move.
This command can interrupt an in-progress non-blocking SetAperture-
Angles or Home command. When this is done, the callback for the pre-
viously executing non-blocking command will return with ERR_TIMEOUT.

6.2.3.12 ocular error t ocular::RobotEye::SetApertureAngles (double Az, double
El, double Speed, ocular::RobotEyeNotificationCallbackClass ∗
callbackPtr)

Non-Blocking synchronised motion command. Method used to point the Robot-
Eye aperture at a specific angle, specified in degrees, in the default RobotEye
coordinate system. This function will return immediately, and the callback will
be executed when either motion is complete, an error has occured, or the ap-
propriate timeout occurs. It is intended to be the standard non-blocking method
for pointing a Robot Eye.

Parameters
Az - Azimuth angle in degrees (0 to 360)
El - Elevatiuon angle in degrees (-max to +max) where max de-

pends on model (usually max = 35 degrees). 0 degrees is the
horizontal plane.

Speed - in Hz (the vector motion speed). This is an upper speed limit
only, depending on the current acceleration limit the eye may not
reach the specified speed during the motion.

callbackPtr - This is a pointer to a RobotEyeCallbackClass. The user
should implement a derived-class with an implementation of the
NotificationCallback virtual function to be executed when the mo-
tion is complete or an error has occured.

Note

This command uses the Motion timeout, as it is a movement command
waiting for the completion of the move.
A non-blocking motion command may be interrupted with any blocking
motion command such as the scan patterns, SetApertureAngles, Track-
ApertureAngles, Stop or Home. When interrupted in this manner, the call-
back will fire when the motion timeout occurs with an ERR_TIMEOUT ar-
gument.

RobotEye C++ Library - Ocular Robotics Pty Ltd

22 Class Documentation

6.2.3.13 ocular error t ocular::RobotEye::SetIPSettings (std::string Serial, std::string
DesiredIP)

This method allows the IP address of the robot eye to be changed. Please
ensure that the target address is accessable from the host machine. For assis-
tance recovering lost eyes, please contact Ocular Robotics pty. ltd.

Parameters
Serial - The Serial number of the eye to have it’s IP changed. This is

required as a safeguard against unintentional IP changes.
DesiredIP - The desired IP address to change the eye to.

Note

When having it’s IP changed, the eye will send the acknowledgement from
the initial IP, then perform the address change. It will be required to con-
struct a new RobotEye object to communicate with the eye on the new
address.

6.2.3.14 ocular error t ocular::RobotEye::SetLaserGain (int gain)

Set the laser gain. This command will adjust the gain of the RE05’s laser range
finder. At power-on, the gain defaults to 0. This setting is not preserved through
power-cycles of the device. High gains can result in improved ranging perfor-
mance to long-range or low-reflectivity targets, but can also result in increased
noise and false returns in the LIDAR data received.

Parameters
gain - Desired laser gain value. Valid values are 0, 1, 2 and 3, where

3 is maximum gain, and 0 is minimum gain

6.2.3.15 void ocular::RobotEye::SetMotionTimeout (unsigned int timeout)

A method to set the current timeout for motion transactions. "Motion" trans-
actions are commands where the response from the eye does not come until
the commanded motion is complete, such as Set Aperture Angles and Home.
Default value is 2500msec, and this should be adequate for the majority of
applications.

Note

This parameter is a function of the RobotEye driver api and not of the Robot
Eye device. The value is only updated for the life of the current RobotEye
object.

RobotEye C++ Library - Ocular Robotics Pty Ltd

6.2 ocular::RobotEye Class Reference 23

A commanded timeout value of 0 will cause the RobotEye API to block
indeifinately until a response from the RobotEye is recieved. As the UDP
interface has no guarantees of delivery, and packet loss of both command
and response packets is possible, this is not recommended as it may cause
the API to hang.

6.2.3.16 void ocular::RobotEye::SetResponseTimeout (unsigned int timeout)

A method to set the current timeout for response transactions. "Response"
transactions are the vast majority of the transactions with the RobotEye, where
the response to the command is immediate. Default value is 500msec, and this
should be adequate for the majority of applications.

Parameters
timeout - Desired timeout in milliseconds.

Note

This parameter is a function of the RobotEye driver api and not of the Robot
Eye device. The value is only updated for the life of the current RobotEye
object.
A commanded timeout value of 0 will cause the RobotEye API to block
indeifinately until a response from the RobotEye is recieved. As the UDP
interface has no guarantees of delivery, and packet loss of both command
and response packets is possible, this is not recommended as it may cause
the API to hang.

6.2.3.17 ocular error t ocular::RobotEye::StartBoundedElevationScan (double
AzRate, double elMin, double elMax, unsigned short NLines)

Begin executing a bounded-elevation scan pattern. Method used to set up
spiral trajectories in aperture space. When viewed in azimuth-elevation space,
this function will create a spiral from ’lowerElevation’ to ’upperElevation’ and
back again continuously at the speed ’AzRate’. The density of the spiral is
set by the ’NLines’ parameter. Note that it takes approximately 3 revolutions
in azimuth of the RobotEye to transition into this mode. A subsequent call to
this, or another motion function will be responded to within 1/4 of a revolution
in azimuth.

Parameters
AzRate - in Hz (rotations per second)

elMin - in degrees: the lower elevation bound of the spiral scan.
elMax - in degrees: the upper elevation bound of the spiral scan.

NLines - The number of lines to perform over the elevation range.

RobotEye C++ Library - Ocular Robotics Pty Ltd

24 Class Documentation

Note

It takes approximately 3 revolutions to start the spiral, and, at most, 1/4 of
a revolution to respond to new commands.

6.2.3.18 ocular error t ocular::RobotEye::StartFullFieldScan (double AzRate,
unsigned short NLines)

Begin executing a full-field scan pattern. Method used to set up spiral trajecto-
ries in aperture space. When viewed in azimuth-elevation space, this function
will create a spiral from the minimum to maximum elevation and back again
continuously at the speed ’AzRate’. The density of the spiral is set by the ’N-
Lines’ parameter. Note that it takes approximately 3 revolutions in azimuth of
the RobotEye to transition into this mode. A subsequent call to this, or another
motion function will be responded to within 1/4 of a revolution in azimuth.

Parameters
AzRate - in Hz (rotations per second)
NLines - The number of lines to perform over the elevation range.

Note

It takes approximately 3 revolutions to start the spiral, and, at most, 1/4 of
a revolution to respond to new commands.

6.2.3.19 ocular error t ocular::RobotEye::StartLaser (unsigned short Freq, unsigned
short Averaging, bool Intensity, unsigned short TargetPort)

Start the laser in an RE05 for an external listener. This command will activate
the laser module within an RE05, and begin streaming range-bearing-elevation
packets to the desired port on the machine transmitting this command. It is
intended to be used with a stand-alone listener such as the Point Cloud Library
RE05_Grabber class. Use the alternative form with a callback as an argument
if it is desired to receive the laser data within this RobotEye object.

Parameters
Freq - The laser sampling rate in Hz. Valid values are from 1 to

10,000, or 30,000 with no intensity
Averaging - The number of laser samples to average to produce each range

measurement. Not supported for 30 kHz sample rate.
Intensity - Enable streaming of intensity values along with range-bearing-

elevation observations. Not supported for 30 kHz sample rate.
TargetPort - The target port number on the host machine for laser data

streaming. This should correspond to the port number of an
already created data listener.

RobotEye C++ Library - Ocular Robotics Pty Ltd

6.2 ocular::RobotEye Class Reference 25

6.2.3.20 ocular error t ocular::RobotEye::StartRegionScan (double AzRate, double
azMin, double azMax, double elMin, double elMax, unsigned short NLines)

Begin executing a region scan pattern. Method used to set up and execute
raster-like trajectories in aperture space. When viewed in azimuth-elevation
space, this function will scan within a rectangle defined by the given azimuth
and elevation limits. The density of the raster is given by the ’NLines’ parameter
which defines the number of horizontal lines to scan within the elevation range.
A subsequent call to this, or another motion function will be responded to within
3 scan lines.

Parameters
AzRate - speed in Hz (rotations per second). This is an upper speed limit

only, depending on the current acceleration limit the eye may not
reach the specified speed during the motion.

azMin - in degrees: the lower azimuth bound of the scan
azMax - in degrees: the upper azimuth bound of the scan

elMin - in degrees: the lower elevation bound of the scan.
elMax - in degrees: the upper elevation bound of the scan.

NLines - The number of lines to perform over the elevation range.

Note

It may take up to 3 scan lines to respond to new commands.

6.2.3.21 ocular error t ocular::RobotEye::Stop ()

Stop any in-progress motion. This command will cause a RobotEye to immedi-
ately cease motion. It can be used to terminate an in-progress non-blocking Set
Aperture Angles or Home instruction, in which case the non-blocking callback
will return ocular::ocular_error_t::ERR_TIMEOUT

6.2.3.22 ocular error t ocular::RobotEye::StopLaser ()

Stop the laser in an RE05. This command will de-activate the laser module
within an RE05, and stop the data streaming.

6.2.3.23 ocular error t ocular::RobotEye::TrackApertureAngles (double Az, double
El, double Speed)

Rapid-response motion command. Method used to point the RobotEye aper-
ture at a specific angle, specified in degrees, in the default RobotEye coordinate
system. This function sends setpoints to the RobotEye controller. Previous set-
points are aborted once new setpoints are sent. Use this method for tracking
dynamically moving targets, or where extremely low-latency motion control is
required.

RobotEye C++ Library - Ocular Robotics Pty Ltd

26 Class Documentation

Parameters
Az - in degrees (0 to 360)
El - in degrees (-max to +max) where max depends on model (usu-

ally max = 35 degrees). 0 degrees is the horizontal plane.
Speed - in Hz (the vector motion speed)

Note

This is a non-blocking function call, and will return immediately.
This command will cause the eye to begin motion more rapidly than the
Set Aperture Angles command, however it does not provide a notification
when motion is complete, and it may have longer settling times than an
equivalent Set Aperture Angles command.

The documentation for this class was generated from the following file:

• include/roboteye/RobotEye.h

6.3 ocular::RobotEyeGrabber Class Reference

Inheritance diagram for ocular::RobotEyeGrabber:

ocular::RobotEyeGrabber

ocular::RobotEye

Public Member Functions

• RobotEyeGrabber (std::string EyeIP)
• ocular_error_t StartLaser (unsigned short Freq, unsigned short Averag-

ing, bool Intensity, ocular::RobotEyeLaserDataCallbackClass ∗callback-
Ptr)

• void StartListening (ocular::RobotEyeLaserDataCallbackClass ∗callback-
Ptr)

Additional Inherited Members

6.3.1 Member Function Documentation

RobotEye C++ Library - Ocular Robotics Pty Ltd

6.3 ocular::RobotEyeGrabber Class Reference 27

6.3.1.1 ocular error t ocular::RobotEyeGrabber::StartLaser (unsigned
short Freq, unsigned short Averaging, bool Intensity,
ocular::RobotEyeLaserDataCallbackClass ∗ callbackPtr)

Start the laser in an RobotEye Lidar. This command will activate the laser
module within an RobotEye Lidar, and begin streaming range-bearing-elevation
packets to this RobotEyeGrabber object. Each time a packet is received, the
data will be converted into a std::vector of ocular::ocular_rbe_obs_t strucutres,
and the LaserDataCallback method within the provided callback class will be
executed.

This is an overload of the base RobotEye class RobotEye::StartLaser which
automatically creates the receiver and fills in the appropriate port number ar-
gument.

Parameters
Freq - The laser sampling rate in Hz. Valid values are from 1 to

10,000, or 30,000 with no intensity
Averaging - The number of laser samples to average to produce each range

measurement. Not supported for 30 kHz sample rate.
Intensity - Enable streaming of intensity values along with range-bearing-

elevation observations. Not supported for 30 kHz sample rate.
callbackPtr - A pointer to the derived callback class who’s LaserData-

Callback method is to be executed when data is received.

6.3.1.2 void ocular::RobotEyeGrabber::StartListening (ocular-
::RobotEyeLaserDataCallbackClass ∗ callbackPtr
)

Start listening to laser data on the callback without starting the laser. This
command will activate the listening for external incoming laser data into this
RobotEyeGrabber object without starting the laser itself. This should only be
used when this application is not starting the laser itself, but only receiving data
from the laser. Each time a packet is received, the data will be converted into a
std::vector of ocular::ocular_rbe_obs_t strucutres, and the LaserDataCallback
method within the provided callback class will be executed.

Parameters
callbackPtr - A pointer to the derived callback class who’s LaserData-

Callback method is to be executed when data is received.

The documentation for this class was generated from the following file:

• include/roboteye/RobotEyeGrabber.h

RobotEye C++ Library - Ocular Robotics Pty Ltd

28 Class Documentation

6.4 ocular::RobotEyeLaserDataCallbackClass Class Refer-
ence

Callback class for Laser Scanner Data.

#include <RobotEyeCallbacks.h>

Public Member Functions

• virtual void LaserDataCallback (std::vector< ocular::ocular_rbe_obs_t >
observations, unsigned int timestamp=0)=0

6.4.1 Detailed Description

Callback class for Laser Scanner Data.

The documentation for this class was generated from the following file:

• include/roboteye/RobotEyeCallbacks.h

6.5 ocular::RobotEyeManager Class Reference

#include <RobotEyeManager.h>

Public Member Functions

• RobotEyeManager ()
• ocular_error_t SearchForEyes (unsigned int timeout, bool blocking=true,

ocular::RobotEyeManagerCallback ∗callbackPtr=NULL)
• void StopSearching (void)
• ocular_error_t WaitForTransactionComplete (void)
• bool CheckIP (std::string ip)
• bool IsKnownSerial (std::string serial)
• ocular_error_t SetIP (std::string serial, std::string desiredIP)
• std::string GetIPFromSerial (std::string serial)
• RobotEyeMap GetFoundEyeList (void)
• std::string GetFormattedFoundEyeList (void)
• void ResetEyeList (void)
• unsigned int GetNumEyesInList (void)

RobotEye C++ Library - Ocular Robotics Pty Ltd

6.5 ocular::RobotEyeManager Class Reference 29

6.5.1 Detailed Description

The RobotEyeManager class. This class provides functionality to search a
network for eyes, and to update the serial numbers of any eyes present on the
network. The basic search functionality is implemented through the SearchFor-
Eyes method, and an internal RobotEyeMap of eyes found since construction
or the last call to ResetEyeList. It uses full broadcast packets for searching,
so in most cases will find eyes outside the subnet of the network adapters in
use, however firewalls and local system configuration may prevent this if not
correctly configured.

6.5.2 Constructor & Destructor Documentation

6.5.2.1 ocular::RobotEyeManager::RobotEyeManager ()

Default constructor for RobotEyeManager class. This will acquire all required
resources for management of all eyes on a network.

6.5.3 Member Function Documentation

6.5.3.1 bool ocular::RobotEyeManager::CheckIP (std::string ip)

Helper method to check for valid IPV4 address. This is a simple helper method
that confirms the input string is of the form W.X.Y.Z where W, X, Y and Z are all
within the range 0:255 inclusive.

Parameters
ip - IP address string to check for validity

Returns

True if ip is a valid IPV4 address, false otherwise.

6.5.3.2 std::string ocular::RobotEyeManager::GetFormattedFoundEyeList (void)

Get list of eyes formatted as a std::string for display. This method will format
the current RobotEyeMap in a tabular manner for display. Intended for use in
console applications.

6.5.3.3 RobotEyeMap ocular::RobotEyeManager::GetFoundEyeList (void)

Get list of eyes found by SearchForEyes. This method will return a map of
strings containing the list of found robot eye devices on the network and their

RobotEye C++ Library - Ocular Robotics Pty Ltd

30 Class Documentation

associated IP addresses. To fill this list, a prior call to SearchForEyes must be
made.

6.5.3.4 std::string ocular::RobotEyeManager::GetIPFromSerial (std::string serial)

Get the IP address of an eye from a known serial number. This method is used
to retrieve the IPv4 address of a robot eye previously seen by a SearchForEyes
command as a string.

Parameters
serial - The serial number of the eye for which the IP is desired

Returns

The IPv4 address of the requested eye. If the eye has not been seen on
the network, an empty string will be returned.

6.5.3.5 unsigned int ocular::RobotEyeManager::GetNumEyesInList (void)

Get number of eyes currently in the RobotEyeMap. Method to extract number
of eyes seen on the network as a result of SearchForEyes calls since startup
or the last call to ResetEyeList.

6.5.3.6 bool ocular::RobotEyeManager::IsKnownSerial (std::string serial)

Check whether serial has been seen. Check internal map of serial numbers to
check whether the desired serial has been seen on the network as a result of
a previous or ongoing SearchForEyes command.

Parameters
serial - Serial number to check internal map for.

Returns

True if provided serial number has been seen on the network, false other-
wise.

6.5.3.7 void ocular::RobotEyeManager::ResetEyeList (void)

Erase the current internal RobotEyeMap. This method will clear the current
internal map of found robot eyes. It is the only method by which eyes which
may have previously been on the network but are no longer present can be
found.

RobotEye C++ Library - Ocular Robotics Pty Ltd

6.5 ocular::RobotEyeManager Class Reference 31

6.5.3.8 ocular error t ocular::RobotEyeManager::SearchForEyes (unsigned int
timeout, bool blocking = true, ocular::RobotEyeManagerCallback ∗
callbackPtr = NULL)

Method to search for eyes present on the network. This is a method for search-
ing for any Robot Eye devices present on the local network. It has flexible
behaviour based on the arguments provided. The default configuration is as a
blocking call which will search for the specified timeout, and then return. The
UDP search command will be transmitted twice per second for the period of
the timeout. If blocking is set to false, then this call will return immediately,
and the search will proceed asynchronously in a separate thread space for the
specified timeout. If a pointer to a RobotEyeManagerCallback is provided as
an argument, then this callback will be executed on completion of the specified
timeout.

If the search is done with blocking set to false, it is possible to specify a timeout
of 0. This will cause the asynchronous search to proceed indefinately. If a
callaback is provided, this callback will be executed with each re-transmission
of the search request, providing a regular, asynchronous update of of the eyes
seen on the network since the last call to ResetEyeList.

Only one transaction can be in-progress for each RobotEyeManager class at
any time. In-progress transactions can be stopped with the StopSearching
method.

Parameters
timeout - The overall timeout for the search function in milliseconds. For

blocking = true, 0 is an invalid value. For blocking = false, 0
indicates a request for an ongoing asynchronous search.

blocking - Whether to block on timeout of the search or not. Defaults to
true.

callbackPtr - Callback to execute on completion of search, or on re-
transmission of search for ongoing asynchronous searches.

6.5.3.9 ocular error t ocular::RobotEyeManager::SetIP (std::string serial, std::string
desiredIP)

Set the IP address of the target eye. This method enables the setting of the
IP address of a target eye on the network. There is no requirement that the
specified serial number has been seen on the network as the result of a Search-
ForEyes command.

Parameters
serial - Serial number of the eye who’s I.P. is to be changed.

desiredIP - Desired IP address of the eye.

RobotEye C++ Library - Ocular Robotics Pty Ltd

32 Class Documentation

Note

This command does not check for IP address conflicts. Setting the IP of
an eye to a currently occupied IP address will cause undefined behaviour.

6.5.3.10 void ocular::RobotEyeManager::StopSearching (void)

Method to stop an in-progress search. A call to a this method will stop any
in-progress search for eyes. If called from a different thread, it can also be
used to interrupt a blocking SearchForEyes call or a SetIP call. This call will
cause all relevant behaviours to occur as-if the specified timeout for the stopped
transaction had occured.

6.5.3.11 ocular error t ocular::RobotEyeManager::WaitForTransactionComplete (void
)

Method to wait for completion of asynchronous transaction. This method will
block until an asynchronous SearchForEyes transaction is complete. If no
search is currently in progress it will return immediately with a NO_ERR code.
If the search in progress is an ongoing asychronous search, it will return im-
mediately with an ERR_BUSY code, as such a call will never timeout, and this
function would therefore never return.

The documentation for this class was generated from the following file:

• include/roboteye/RobotEyeManager.h

6.6 ocular::RobotEyeManagerCallback Class Reference

#include <RobotEyeManager.h>

Public Member Functions

• virtual void ManagerCallbackFcn (RobotEyeMap foundEyes)=0

6.6.1 Detailed Description

A class used to define a callback for eye searches. This class has a single pure
virtual member fuction, and is used to derive callback classes. The callback is
executed by the RobotEyeManager::SearchForEyes method, for more details
see the documentation for that method.

RobotEye C++ Library - Ocular Robotics Pty Ltd

6.7 ocular::RobotEyeNotificationCallbackClass Class Reference 33

6.6.2 Member Function Documentation

6.6.2.1 virtual void ocular::RobotEyeManagerCallback::ManagerCallbackFcn (
RobotEyeMap foundEyes) [pure virtual]

RobotEyeManager Callback Function. This pure virtual function should be
implemented in a class derived from the RobotEyeManagerCallback class
to enable the callback functionality of the RobotEyeManager::SearchForEyes
method.

The documentation for this class was generated from the following file:

• include/roboteye/RobotEyeManager.h

6.7 ocular::RobotEyeNotificationCallbackClass Class Refer-
ence

Callback class for notification callbacks from asynchronous commands.

#include <RobotEyeCallbacks.h>

Public Member Functions

• virtual void NotificationCallback (ocular_error_t ErrCode)=0

6.7.1 Detailed Description

Callback class for notification callbacks from asynchronous commands.

6.7.2 Member Function Documentation

6.7.2.1 virtual void ocular::RobotEyeNotificationCallbackClass::NotificationCallback (
ocular error t ErrCode) [pure virtual]

Pure Virtual callback function used for generating callback notifications on
some motion commands

Parameters
ErrCode - The error code appropriate to the asynchronous command

made. ErrCode of NO_ERR indicates success.

The documentation for this class was generated from the following file:

• include/roboteye/RobotEyeCallbacks.h

RobotEye C++ Library - Ocular Robotics Pty Ltd

	RobotEye C++ Library Reference Manual
	RobotEye Conventions
	RobotEye Coordinate System Definitions
	RobotEye Angle Conventions

	RobotEye Network Setup
	RobotEye IP Address
	Ethernet as a Control Bus
	Configuring Your Firewall

	Hierarchical Index
	Class Hierarchy

	Class Index
	Class List

	Class Documentation
	ocular::ocular_rbe_obs_t Struct Reference
	Detailed Description
	Member Data Documentation
	azimuth
	elevation
	intensity
	range

	ocular::RobotEye Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	RobotEye

	Member Function Documentation
	GetApertureAngles
	GetErrorString
	GetLastBlockingError
	GetLastNonBlockingError
	GetMotionTimeout
	GetResponseTimeout
	GetSerial
	Home
	Home
	SetAcceleration
	SetApertureAngles
	SetApertureAngles
	SetIPSettings
	SetLaserGain
	SetMotionTimeout
	SetResponseTimeout
	StartBoundedElevationScan
	StartFullFieldScan
	StartLaser
	StartRegionScan
	Stop
	StopLaser
	TrackApertureAngles

	ocular::RobotEyeGrabber Class Reference
	Member Function Documentation
	StartLaser
	StartListening

	ocular::RobotEyeLaserDataCallbackClass Class Reference
	Detailed Description

	ocular::RobotEyeManager Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	RobotEyeManager

	Member Function Documentation
	CheckIP
	GetFormattedFoundEyeList
	GetFoundEyeList
	GetIPFromSerial
	GetNumEyesInList
	IsKnownSerial
	ResetEyeList
	SearchForEyes
	SetIP
	StopSearching
	WaitForTransactionComplete

	ocular::RobotEyeManagerCallback Class Reference
	Detailed Description
	Member Function Documentation
	ManagerCallbackFcn

	ocular::RobotEyeNotificationCallbackClass Class Reference
	Detailed Description
	Member Function Documentation
	NotificationCallback

